
CD
CO
00

mm ■ ■

ft
ARPA ORDER NO. 2223

Wm. A. Wulf
Carnegie-Mellon University

Ralph L. London
USC Information Sciences Institute

Mary Shaw
Carnegie-Mellon University

ISI/RR~76~46
June 1976

ABSTRACTION and VERIFICATION in ALPHARD:

Introduction to Language and Methodology

D D C

^ AUG 18 1976

D
■ UJ t s

'

INFORMATION SCIENCES INSTITUTE

UNIVERSITY OF SOUTHBW CALIFORNIA m 467r, Admnahy Wayj Marimidel Rey I California 90291
(2n)822-nU

>.^Mttm-ii..ii.«wwaiii i-i. Mnmrnr*

DISTBIBUTIQM STATEMENT Ä

Approved foi public xelease;
Distribution Unlimited

UNCLASSIFIED
ccr.T^TT^Iis.FlCATION 'Sr THIS PAGE r^.n D... Enl.r.d;

yM^

Yl.ll"^^

REPORT DOCUMENTATION PAGE

T'^WfrW*1 ' 'IM'1'""^
ISI/RR-76-46

2. GOVT ACCESSION NO.

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

ABSTRACTION and |ERIFICATION in^LPHARD:

introduction to language and Methodology » EBBS

lÄrATÄulf,[Capegie-Kellon University
Raloh L. AiOnflon/^^SI
MArv/Shagpdtrnegie-Mellon University

'9 PERFORMING ORGANlZAl'lON NAME AND ADDRESS

USC Information Sciences Institute
^676 Admiralty Way
Marina del Rev, CA 90291

Uli or nfnnm I piwigacawBMC

Research I^e^irt, * /

ms anr ÜS5 HM****

>" CONTRACT OR GRANT NUMBERf»J

DAHC 15 72 C 0308

10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

ARPA Order No. 2223

-- —— 1 12. rEPBH" oAl6~

'DeTense'-Adv^c^dVesearTh Projects Aeencv|V/Junrifc 076/
1400 Wilson Boulevard
Arlington, VA22209__

Ti-iSÖNlTORING AGENCY NAME » ADDRESS^! d(/(.«n(Irom C

"6. DISTRIBUTION STATEMENT (ol this Rtport)

kcURITY CLASS, (ot Ihlt «port;

UNCIASSIFIED
Si" DECLASSIFICATION/DOWNGRADING

SCHEDULE

This document is approved for public release and sale;
distribution unlimited. ^^^

\t...B{}Jl0H STATEMENT (oftH. ,t.tr.C, «,..,•<! M Block 20. // ^

18. SUPPLEMENTARY NOTES

^mjö^^sji
<«u »til» tf ii»ii»»i«y —^ '*

(OVER)

20. ABSTRACT fConHnu» on ;,v.r.. ./<*. » n.c«..ry «.d /d.nrtfy by 6loc* numb.O

(OVER)

p.- FORM i^yj ED|TION OF I NOV65 IS OBSOLETE
UU 1 JAN 73 n,n->.ni*.«fi01 S/N 0 10 2-014-6601

jaaciA§ai|ip yh
SECURITY CLASSIFICATION O? THIS PAGE r^" "•'• •"'•'•">

UNCIASSIFIED
SECUWITY CLASSIFICATION OF THIS PAOEfHTiwi Dal« Bntmrmd)

19. KEY WORDS

abstraction and representation, abstract data types,
assertions, correctness, data abstraction, data
structures, extensible languages, information hiding,
levels of abstraction, modular decomposition, program
specifications, program verification, programming
languages, progranuning methodology, proofs of
correctness, protection, structured programming,
types, verification

20. \i ABSTRACT

Iphard is a programming language whose goals include
supporting both the development of we11-structured
programs and the formal verification of these
programs. This paper attempts to capture the
symbiotic influence of these two goals on the design
of the lang- ige. To that end the language descrip-
tion is interleaved with the presentation of a proof
technique and discussion of programming methodology.
Examples to illustrate both the language and the
verification technique are included.

>

UNCIASSIFIED
SECURITY CLASSIFICATION OF THIS PAGCr»*»" Dim Enfttd)

mmm- ma

»KESSION tor

NTIS Wlllts SectlDt

DDC lutf SectlM D

nURHOBNOEB o

JÜS1 If ICATIÜH

/

IT
OISTBIBUTION/AVAIUBIUTY CMQ

Dlst. AVAIL, and/or SPECIAL

ABSTRACTION and VERIFICATION in ALPHARD:
Introduction to Language and Methodology

Wm. A. Wulf, Carnegie-Mellon University

Ralph L London, USC Information Sciences Institute

Mary Shaw, Carnegie-Mellon University

June 14, 1976

DDC
EtSEDÜßET

^ AUG 18 1976

JljEisEinrra
D

Abstract: Alphard is a programming language whose goals include supporting both the
development of well-structured programs and the formal verification of these programs.

Thl» paper attempts to capture the symbiotic influence of these two goals on the design of
the language. To that end the language description is interleaved with the presentation of
a proof technique and discussion of programming methodology. Examples to illustrate both

the language and the verification technique are included.

Keywords and Phrases: abstraction and representation, abstract data types, assertions,

correctness, dats abstraction, data structures, extensible languages, information hiding,
levels of abstraction, modular decomposition, program specifications, program verification,

programming languages, programming methodology, proofs of correctness, protection,

structured programming, types, verif;cation

The research described here was supported in part by the National Science Foundation
(Grant DCR74-04187) and in part by the Defense Advanced Research Projects Agency

(Contracts: F44620-73-C-0074, monitored by the Air Force Office of Scientific Research,

and DAHC-15-72-C-0308). The views expressed are those of the authors.

DISTRIBUTION STATEMENT Ä

Approved for public lelease;
Distiibution Unlimited

■WWipiWiMB^

Page 2

Contents

Introduction 3

Preview of the Alphard Language 5

Verification of Forms 8

Introduction to Alphard 14

Example of a Form Verification: Restricted Stacks 21

Generalizing Form Definitions 24

Protection and Access Control 31

Another Example: Queues 33

Conclusion 39

References 42

Appendix A: Formal Definition of a Sequence 47

mmmmmmmm

ALPHARD: Introduction to Language and Methodology Page 3

Introduction

The principal subject of this paper is the symbiosis between program verification

and programming methodology, especially the way the relationship has affected the design
of a particular programming system, Alphard (currently under development at Carnegie-

Mellon University). The original design goals for Alphard were concerned with both
methodology and verification. We wished to produce a programming environment which
supported and encouraged the development of "well structured" programs, and which also

made the verification of those programs easier than in existing languages. We have been
surprised and extremely pleased at the degree to which these concerns have reinforced

each other to produce a coherent system design. Although we shall discuss language

design and verification separately, our real goal in this paper is to show that they are not

independent, and that when they are treated together a pleasing union results.

Our ultimate concern is with the cost and quality of real programs. It is by now

generally accepted that programming costs are too high, quality is too low, schedules are
too often missed, and so on. We assume that the reader is already familiar with the
discussion of the situation and with some of the proposals for remedying it [Baker72,

BrooKs75(Buxton70, Dahl72, Dijkstra68a, Goldberg73, Gries74, Naur69, Parnas? 1,72a.

Weinberg71,Wirth71,Wulf72].

The area called programmmg methodology or structured programming is concerned

with those aspects of the current software problem which result from our human

limitations in dealing with complexity. Large programs, even not-so-large ones, are among

the most complex creations of the human mind. They are often too complex for their

creators to understand. This "unmanageable complexity" is at the root of many problems
with contemporary software. Structured programming has addressed this situation by

attempting to reduce the complexity of programs (or at least their apparent complexity),

by restricting either the form of the programs (by eliminating the goto, for

8xample[DijKstra68b]) or the process of creating them ^as is the case with stepwise

refinement [Wirth71]). In both cases the intent is to match the complexity, as we humans

perceive it, to the limitations of our understanding.

Problems that arise from repeated modification of large programs are often ignored

in the literature on programming methodology. Most large programs are not simply

written and run; rather, they are continually modified and enhanced. The same limitations

which effectively prevent humans from dealing with the complexity of large programs also

prevent them from anticipating all the ways their programs will be used. Thus the initial

program is seldom adequate for all its eventual uses, and it experiences constant pressure

- .!.

Pa8e 4 Introduction

for improvement and expansion. Indeed, the more successful a program is, the more likely

it is to be modified: only programs no longer in use are safe from this pressure. In many

cases the cost of modification exceeds that of initial development, often by a large amount
[Goldberg73].

Although modification issues have not received the attention we believe they

deserve, the concerns of programming methodology are especially relevant to solving

them. Much of the effort involved in modifying an extant program is devoted to simply

understanding what is already there. If what's there is overly complex, modifying it can
be difficult, time consuming, and susceptible to errors.

Responding to the modification issue adds a dimension to programming methodology.
It is no longer adequate for the original programmer to develop the program in a well-

structured manner; if the program is to be modifiable, the structure of the development
must be retained in the ultimate program text. The future reader must be able to perceive

the structure and use it to understand what the program is doing. Thus, a major objective
of the Alphard design is precisely retention of this structure.

The research on program verification has been concerned with another approach to
alleviating the problems with current software — proving that the programs we write are

in fact implementations consistent with their specifications [Floyd67, Hoare69,72b,
London75, Manna74, Naur66]. No matter how clearly we write, we must recognize that

programming demands absolute precision. To have real confidence in our programs we

must develop them with a degree of precision comparable to that found in mathematics. In

short, we must aim toward proofs of our programs, even if the proofs are not in fact
carried out.

Program proofs tend to be large (at least as large as the orogram) and tedious. It is
not reasonable to expect them to be done "by hand" as a mathematician would; the human

effort would be unreasonable and the probability of error too high. Automatic proof aids

will be needed if we are to find proofs with a reasonable amount of effort. Existing
automated methods are not strong enough to cope with the complexity of real programs, at

least as those programs are currently formulated; this has prohibited routine verification

Of production programs. The Alphard response, as we shall see, has been an attempt to

modularize the proofs so that each individual segment is within the ability of present, or
easily attainable, automated proof aids.

Recently, attention has turned to verification of collections of related functions as a
means of segmenting the verification task along the same lines as the decomposition of the

program itself. For example, proof techniques described by Hoare [Hoare72b] and Spitzen

and Wegbreit [Spit2en75, Wegbreit76] can show that a data representation and its

associated operations possess the expected properties, provided that the representation

is directly manipulated only by the associated operations and not by other parts of a

program. This decomposition and factorization permit parts of the verification to be

wm
■

ALPHARD: Introduction to Language and Methodology Page 5

performed for each operator definition instead of for each use. Ultimately, the techniques

rely on induction on the number of data operations performed. Related proofs may be

found in [Guttagys, 76b, Zilles75].

Well structured, understandable, easily modified, and demonstrably consistent

programs can in principle be written in any programming language. In practice, however,

we Know that the presence or absence of certain features in a language can materially

affect all these desirable properties. We also know, from both natural and artificial
languages, that the language we use to express our ideas can shape the ideas themselves

[Whorf56]. Thus, by choosing language features and structure properly we can hope to

exert a positive influence on the programs written in the language.

Instead of starting with an existing language and focusing on either methodclogy or

verification individually, we therefore chose to treat the issues together in a new language

design.

This paper, together with its companions [London76, Shaw76b], briefly introduces

the Alphard language, discusses the verification issuos in this general context, and then

elaborates on the language mechanisms suggested by this approach to verification. This

cycle is repeated several times for various aspects of language and verification; several
examples are developed. The closing section returns to the symbiotic relation between

methodological and verification concerns.

Preview of the Alphard Language

A key concept in structured programming is abstraction: the retention of the

essential properties of an object and the corollary neglect of inessential details. For

example, all programming languages provide their users with an o6itroct machine from

which inessential details such as the specific assignment of memory locations has been
eliminated. Abstraction is important to structured programming precisely because it

permits a programmer to ignore inessential detail and thereby reduce the apparent

complexity of his task.

Several abstraction techniques have appeared in the literature on structured

programming. For example, in stepwise refinement or top-down design, the top-level,

abstract description of a program is refined to a description in a programming language in

1 Of course, in a certain sense any attempt to design a structured programming

language is doomed to failure. A perverse p Dgrammer can easily defeat any attempt by

the language to guarantee clarity or correctness. The language can only encourage good
structure and provide the opportunity for verification ~ it cannot enforce either one.

i

Page 6 Preview of the Alphard Language

a series of progressively more concrete steps [DijkstrayZ, Wirth71]. In modular
decomposition [Parnas72a, 72b], the final (source) version of a program is divided into

units; each unit is the realization of some abstraction. Parnas further advocates that the

implementation of each of these abstractions be hidden from its users lest they

inadvertently misuse knowledge of the implementation [Parnas71].

The gross organization of Alphard programs is based strongly on Parnas' ideas,

although not on the details of his proposals. This style of program decomposition provides

the opportunity to isolate and textually localize all of the details about the implementation

of an abstraction. This has several advantages over more traditional organizations:

- The places where modifications must be made are more likely to be close

together.

- A smaller portion of the program will have to be reverified when a change

is made.

- The user of the abstraction may ignore the details of the implementation.

- It becomes possible to make absolute statements about certain things (e.g.,

data structures) which are independent of even perverse programmers.

- The implementor of the abstraction may (sometimes) ignore the complexity

of the environment in which the abstraction will be used.

The specific language mechanism used to capture this style of decomposition is derived

from Simula classes [Dahl72]; a similar adaptation has also recently appeared in CLU

[Liskov74,75a], and related features are beginning to appear in other languages (see, for

example, [DataConference76]). At this point we shall only introduce the general nature of
the construct and the Alphard notation; more details will follow an explanation of the

verification issues.

The abstraction mechanism in Alphard is called a form. It permits the programmer to

introduce a new abstraction into the program; in most ways the newly introduced

abstraction will resemble a new type as that term is used in other programming

languages.

^ In general, the abstraction introduced by a form need not be a type in the

traditional sense. We use the word "type" informally in this paper, however, and the

reader will not be misled too badly by thinking in those terms.

. - . ■ •

ALPHARD: Introduce Language and Methodology Page 7

Thus, in an Alphard program one might find a definition such as:

form complex»
beeinform

endform

This definition introduces a new abstract notion, "complex variable". (Here and in the

sequel we shall use ellipses, ". . .", to denote text whose details we wish to ignore for the
moment.) The form contains all the information relevant to the implementation of the

abstract notion. In this case, for example, we would find both the definition of the data

structure to be used in representing a complex variable (e.g., two real variables) and the
definition of a set of operations on them (addition, multiplication, assignment, etc.). The

form also gives a formal specification of the abstract properties of these complex

variables, but the full story of that must wait a bit.

Once such a definition is written, a programmer can write an abitract program using

the newly defined notion; variables of the new type may be declared, the defined

operations may be performed, and so on. For example, one may write:

local x,y,z:complexi

x<-x4-y*Zi

because certain features of the language allow new functions to be associated with the

infix operations.

All of this is, of course, very similar to the notions found in er ensible languages

[Schuman?!]. However, the emphasis is considerably different: we are not interested in

general syntactic extension. Rather, we are concerned with encapsulation, separating the

concrete realization (implementation) of an abstraction from its use in an abstract program.

Thus, for example, all of the representational information in a form is inaccessible to the
abstract program; only those properties defined in the formal specification are accessible.

So much for a preliminary peek into the nature of Alphard. In the following section

we describe a technique for verifying the properties of a form. Since so much of the
syntax and semantics of Alphard are tuned to this verification technique, we shall explain

the technique first, then present the language via an extended example. For now, the

important property of the language is its ability to separate the use of an abstraction from
the definition of its concrete representation. The verification technique exploits this

separation and permits the implementation (the form) to be verified independently of the

abstract program in which it is used.

Page 8 Preview of the Alphard Language

In order to show as clearly as possible the relation between language and
verification we have omitted a number of issues from this discussion of Alphard. These

include data representation, reference variables, storage allocation, statement and
expression syntax, exception handling, input-output, literals, and other things not needed
for this exposition. At least for the programs given here, the reader's intuition and good

sense should suffice to fill in the gaps.

Verification of Forms

Our overall strategy for verifying Alphard programs parallels the program

decomposition implicit in the notion of a form. We shall presume a relatively small main

program expressed in terms of operations on abstract objects natural to the problem.

This main program is verified by traditional methods (e.g., Inductive assertions [Floyd67,

Manna74(chapter 3), Naur66]), treating the specifications of the abstract objects and
operations as if they were primitive. Then, to justify the use of the specified properties
of the abstract objects we verify that the concrete implementation of each abstraction is

consistent with its specifications. In general the implementation of an abstraction will be

given in terms of further, lower Level, abstract objects and operations on them. Thus the
verification of the algorithms used to implement an abstraction will be similar to the
verification of the most abstract (top level) program. An obvious requirement of this

approach is that each of the implementations be correct, or verified, if the ultimate
program is to be verified. Roughly speaking, the verification will show that the specified

relations exist between all abstractions and their implementations so that each

implementation "behaves liKe", or models, its abstraction.

The key to the utility of this approach is separating the proof of each program that

uses an abstraction from the proof of the implementation of that abstraction. Several

advantages accrue *<om this separation:

- Individual proofs are kept manageably small.

- Program modifications generally imply reverification of only the affected
program portion, usually a single form (exceptions occur when the

modification affects the specification of the abstraction implemented by

the form).

- Although the entire program can be considered correct only when all
portions have been verified, it is feasible for certain portions to be
unverified during program development. Alternatively, some verified

forms may be available from a library while others may have been
developed and verified by a subgroup independently; these forms can be

used confidently during the development of further programs or forms.

ALPHARD: Introduction to Language and Methodology Page 9

The remainder of this section explicates a proof methodology which permits this
separation. !t is based on ideas from Hoare's notable paper on correctness of data

representations[Hoare72b].

Suppose that we have an abstract type, T, that "y" is an arbitrary object of type T,

and that Aj.-.-.A,, are abstract operations defined on objects of type T. Our first concern

will be to define the objects of this type and the operations on them in a manner which
permits a higher level program tc use these objects and be verified easily. This definition

consists of three parts: the specifications, which constitute the user's sole source of

information about the form, the representation, which describes the representation and

related properties of an object of this type, and the implementation, which contains the

definitions of the functions that can be applied to an object.

In the specifications, we first define the class of objects belonging to this type by a
predicate which, for reasons which become clear later, is called the abstract invariant, Ia.

Second, since the abstract type, T, may be defined only under certain assumptions about
the parameters supplied when it is created, we capture these assumptions by a predicate,

/3reci. Third, we give another predicate /?|njj, which characterizes the initial value given to

an abstract object w4ien it is created. Fourth, we define the abstract operations by their
input-output relations, using pairs of predicates which characterize their effect. We call

these /?pre and ^p0sti in Hoare's notation [Hoare69] they say:

ßpreW { Aj } ^post(y)

characterizing the effect of the operation Aj by asserting that if the predicate ßpre holds

before the operation is executed, then /?p0st will hold afterwards. Aj is assumed to read

or change only y.

Our next concern will be to characterize a concrete implementation of these abstract

objects and operations. Suppose that "x" is the concrete representation of an object of

type T, and hence, in general, "x" will be a collection, or record of concrete variables.

Further, suppose that Cj,...,Cn are the concrete operations which purport to be the

implementations of the abstract operations A^A^ The set of concrete objects is also

defined by a predicate, which we shall call the concrete invariant, Ic. The relation

between a concrete object, x, and the abstract object that x represents may be expressed

by a representation function, rep:

rep(x)=y

Note that the reg. function may be many-one; that is, more than one concrete object may

represent the same abstract object. Re£ must, however, be defined for all x sat.sfying L.

The concrete operations, Cj, must also be characterized in terms of their input-

output relations. To avoid confusion in the sequel we shall refer to these predicates as

page JO Verification of Forms

the input and output conditions, ßm and /?out, rather than as pre and post conditions.

Thus,

/W*) I ci} /Wx)

We assume that each Cj alters or accesses variables only in x.

Finally, we shall presume a distinguished concrete operation, Cjnjt, which is invoked

whenever an object is created; this operation is responsible for initizür'ng the concrete

representation.

Now, at an intuitive level, we wish to show that the concrete representation and the

implementation of the concrete operations are "correct". More specifically, we wish to

show that it is safe for the programmer working at the abstract level to prove the

correctness of his program using only the abstract specifications of the types he uses: Ia,

ß /?init, and (for each abstract operation) ßpre and /?post. In th* sequel, we often

discuss an arbitrary function whose corresponding abstract and concrete operations are
denoted by the symbols A and C, respectively; our remarks are therefore implicitly

quantified over the set of such operations.

We have chosen to break the proof of the correctness of the concrete realization

into four steps. The first step establishes the validity of the concrnte representation. The
second establishes that the concrete initializahon operation is sufficient to ensure that

/?init and L hold initially, provided /?req is satisfied. The third establishes that the code of

the concrete operations is in fact characterized by the input-output assertions, /(?in and

/?„.lf, and furthermore that L is preserved. The last step establishes the relation
between the concrete input-output assertions and the abstract pre and post conditions.
After describing the proof steps we discuss the relationship between this methodology

and Hoare's.

For the Form
1. Validity of the Representation''

Ic(x) ^ Ia(rep(x))

2. Initiaiization of an Object

/^req I Cinit) ^init^P**» A M**

3 This condition is actually slightly stronger than necessary since we only need to

ensure that those representations reachable by a finite sequence of applications of the

concrete operations actually represent abstract objects; in practice, however, the stated

theorem is not restrictive since Ic can be made stronger if necessary. Note, by the way,

that we need not prove the dual {la(y) implies the existence of an x such that y-rep(x) A

Ic(x)) since this is guaranteed for reachable abstract objects by steps 1-4.

ALPHARD: Introduction to L-nguage and Methodology Page 11

i

For each function
3. Verification of Concrete Operations

/?in(x) A Ic(x) { C i ß0^M A Ic(x)

4. Relat*' i Between Concrete and Abstract Specifications

4a. Ic(x) A /?prfc'rep(x)) 3 ßmM
4b. Ic(x) A ßpre{re^y)) A /?out(x) 3 ßpos[{repM)

where the primed variable in step 4b represents the value of that variable prior to the

execution of the operation.

Note that steps 1 and 4 are theorems to be proved while 2 and 3 are standard
verification formulas. Only the last step, 4, should require further explanation. 4a ensures
that whenever the abstract operation A could legally be applied in the higher level,
abstract program (that is, whenever ß holds), the input assertion of the concrete

operation, ß{n, v ill also ho!d. 4b ensures that if the concrete operation is legally invoked

(that is, Ic(x;.^pre(rep(x)) holds), then the output assertion of the concrete operation,

ßou[, is strong enough (0 imply the abstract post-condition, ßpOS[- The four steps are

sufficient but not necessary for *he proof.

Hoare's similar technique for verifying the correctness of the implementation of an
abstraction differs from the one described above in two respects. First, his approach does

not deal explicitly with the issue of the validity of the representation, or distinguish

explicitly between the concrete and abstract invariants. Second, he did not break the
proof into several steps; we did so because we felt it would add clarity, would allow easier

modifications both of forms and verifications, and would facilitate mechanical verification.

In any case, except for step 1, we shall show that the two techniques are equivalent in the

sense that from the proofs of one approach, we can derive the proofs required by the

other.

Hoare's technique requires our step 2 and, for each function, a combination of steps

3 and 4 which is expressed in our notation as

/?pre(rep(x)) A Ic(x) { C } /?post(rep(x)) A Ic(x)

To obtain the proofs required by Hrare's approach from our proofs, merge steps 3, 4a,

and 4b, using the rule of consequence:4 The first premise for the application of the

consequence rule is

4 The rule of consequence is:
PDQ, Q{S}R, R=>T

P{S}T

Page 12 Verification of Forms

/?pre(rep(x)) A Ic(x) = (8|n(x) A IC(X) A /?pre(rep(x))

which is step 4a with Ic(x) A fipre{repM) added to the conclusion. The second prem...,* is

/?in(x) A Ic(x) A ./?pre(rep(x)) { C) Ic(x) A /?out(x) A /?pre(rep(x'))

which is obtained by the consequence rule using 3, and then noticing that /5pre(rep{x'))

still holds after C since C does not alter x'. The third premise is 4b with the hypothesis
Ic(x) added to the conclusion.

Conversely, to obtain our proofs from Hoare's, first note that ßm and ß0^ are not

included in Hoare's proofs. We are therefore free to choose ßm to be /?pre(rep(x)) and
/Sout to be /?post(rep(x)). Step 3 becomes exactly the combined form, and steps 4a and
4b are trivially provable. Thus the two techniques are equivalent.

In some cases it may be appropriate to show the combined form directly for each
function. Hoare proves the theorem that if step 2 and the combined form have been

shown to hold for the implementation of some abstraction, then a concrete program using
this implementation will produce the {representation of the) same result as an abstract
program would have.5 The proof of this theorem uses induction on the number of

applications of operations in the abstract program. Our steps 1 and 2 establish the basis
step; steps 1, 3, and 4 are used to establish the induction.

One might expect from this description of the methodology that the relationship

rep(xl)-rep(x2) ^ A(rep(xl)) = A(rep(x2))

would be true for arbitrary abstract functions A. Unfortunately, it is false. For example,

let xl and x2 be equal but not necessarily identical representations of a set S (i.e., xl and

x2 contain exactly the same elements, but in different orders); let the function A select an
arbitrary element from S. The post condition for A is just x i S, which does not specify
uniquely which element to select.

In the next section we shall return to the description of Alphard and in particular to
how the various pieces of information required by the proof technique are supplied in a

form. First, however, we must say a few words about the predicate language in which the

fts are expressed. The real issue, of course, is the language used for expressing the
abstract predicates: Ia, ßini[, ßpre, and ßp0s^ since the concrete predicates use the same
language as the specification of the next lower level abstractions.

There remains some controversy about the best specification techniques
[Liskov75b]. We do not wish to enter that debate here; we are content to await the

Assuming, of course, that both the abstract and concrete programs terminate.

ALPHARD: Introduction to Language and Methodology Page 13

emergence of one or more appropriate techniques and ♦hen adopt them. For the purposes
of this paper, however, we must use some scheme trom among the existing techniques. As
Guttag [Guttag76a] has noted, the operational specification technique we are using seems
to be more easily used by current programmers, but may have other problems, such as

overspecification. AxiomL.;ic techniques (may) avoid these problems at the expense of

being less intuitive (at least until one becomes thoroughly familiar with them). We are
neither advocating nor rejecting these two techniques here; Alphard should accommodate

both, and we have chosen one we are comfortable with.

In this paper, we shall presume the existence of a suitable collection of recognized

mathematical entities, such as integers, booleans, sets, sequences, multisets, matrices, and

the i perations defined on these entities. We assume that they have been defined

pre..if.ely and that a rich collection of useful theorems has been proved for each.

Our specifications will be stated in terms of these mathematical objects; in effect

they will characterize a possible implementation in terms of the abstract mathematical

entities. Thus, for example, in the next section we shall define an implementation of a

(restricted) stack. The specification will characterize the stack operations in terms of
operations on a sequenpe, with the sequence itself used to capture the state of the stack.

A precise definition of the notion of a sequence, adapted from [Hoare72a], has been

included as Appendix A. Although the notion is defined formally there, the following brief

informal definition is included here to aid the reader in understanding the examples which

follow,

<si,...,sk> denotes the sequence of elements specified; in particular, '<>"

denotes the empty sequence, "nullseq".

s m <x> is the sequence which results from concatenating element x

at the end of sequence s.

length(s) is the length of the sequence 'V.

first(s) is the first (leftmost) element of the sequence V.

trailer(s) is a sequence derived from V by deleting the first element.

Iast(s) is the last (rightmost) element of the sequence V.

leader(s) is a sequence derived from "s" by deleting the last element.

seq(V,n,m) where "V" is a vector and "n" and "m" are integers, is an

abbreviation for the sequence "^n'^n+l'-'^m^'
alternatively, seq(V,n,m)=sf3q(V,n,m-l) ~ Vm.

Note: first, trailer, last, and leader are undefined for "<>".

■■■- ■• ■ ^...« M. w

Page 14

Introduction to Alphard

This section is an informal discussion of the Alphard language facilities which

support the verification technique introduced above. Since we are primarily concerned

with structural and verification issues we shall not concern ourselves with minor syntactic

aspects of the language or with those (sometimes major) features of the language which
do net bear directly on these issues. We expect that the reader's familiarity with other

languages will be adequate for him to infer both the syntax and semantics of those

constructs whose formal definition is omitted.

Much of the exposition is by example. We develop a definition of stacks and a
program which uses stacks. These examples illustrate both the abstract definition facility

and the interaction of verification considerations with language. We chose the stack for an
example because it is familiar to most readers and because the Alphard program can be

compared to other descriptions.

Forms

Imagine that while designing some program we found it desirable to use the notion

of a stack — in particular, a stack whose elements are integers. We presume that our
language does not contain stacks as a primitive concept, as indeed Alphard does not, so we
want to introduce it as a new abstraction. Suppose further that an a priori depth limit is

known or desired, so we need not define a general stack mechanism, only one which

behaves like a stack so long as its depth does not exceed some predetermined maximum.

We shall lean heavily on the verification methodology developed above to explain

the rationale for the various components of a form definition. We shall present the
definition piecemeal, with each piece corresponding to some aspect of the verification

technique. Starting at the top, the abstraction of a finite-depth stack of integers will be

defined by a form such as:

form istack(n!inteeer)««

beginform

endform;

where "n" is the maximum permissible depth of the stack. Note that we must carefully
distinguish between the abstract concept introduced by such a definition and an instance

ALPHARD; Introduction to Language and Methodology Page 15

of that concept. In general there may be many instances of an abstraction. Instances of
abstractions are introduced into an Alphard program in several ways, but a common one is

by declarations. Thus,

local x:istack(50)i

has the effect of creating an instance of an istack and giving the name "x" to this
particular instantiation. In the jargon of programming languages, this declaration binds the

name "x" to an instantiation of istack.

We must now decide what the abstract properties of our stack are to be. We must

decide both what operations the abstract program shall be allowed to perform and what

effects these operations shall have. In this case we shall allow only four operations:
"push" makes a new entry at the top of the stack, "pop" deletes the current top element

of the stack, "top" returns the value of the current top element of the stack, and "empty"

returns ':true" iff the stack is empty. (Obviously we could have chosen a more
comprehensive set, but this will suffice for our first example.)

The abstract program which uses the notion of an istack will apply these operations

to instances of the abstraction. The form must provide a precise definition of these

operations together with the concrete representation and operations to be used in

implementing them. Thus, in general, a form is composed of three parts: specifications,
representation, and implementation.

form istack(n: integer) =
beRinform

specifications . . .;
representation . . .;

implementation . . .;

endform;

At the very least the specifications must provide the names of the operations

supplied by the form together with the types of their arguments and results. In order for
the user to be able to understand and use the abstraction solely in terms of the

specification, and to permit verification, we must also include (1) a definition of the

abstract domain, (2) the initial value of each entity of the ?bstract type, and (3) the pre

and post conditions for each operation. Using the mathematical notion of a sequence,

defined earlier, we can write:

,

Page 16 Introduction to Alphard

form istack(n: integer) -

beginform

specifications

requires n>Oi

let istack ■ < ... x»... > where Xj is integer}
invariant 0<length(istack)$n;
initially isfack=nullseqj
function

push(s:istack, x;integer) pre 0 5 lei.7,th(f) < n post S"s'~x,

pop(s: istack) pre 0 < lengt s) 5 n post s ■ leader(s'),

töp(s; istack) returns x: integer

pre 0 < length(s) S n post * - last(s'),
empty(s: istack) returns b: boolean

post b - (s-nullseq);
lepresentation ...,

implementation . , .;

endform;

Note how various pieces of information about the abstraction implemented by the
form are introduced: the requites clause specifies /3req, the invariant clause specifies Ia,

the initially clause specifies ßm\\, and each of the function clauses specifies /3pre and

^post for *hat unction.6 Furthermore, no particular implementation is demanded or
precluded.

In this case, then, the lotion of an istack is explicated in terr.is of the mathematical
notion of a sequence of bounded length. The operation "pop", for example, is defined to
produce a new sequence which is just like the old one except that its last element has

been deleted. (As before, the primed symbols in the post conditions, e.g., s', refer to the
value of the (unprimed) symbol prior to execution of the opsration.)

This particular example allows us to illustrate something which was awkward to
introduce in the more abstract discussion in the previous section, because the form may
be parameterized to allow each user to select his own maxim nth, it is more properly

a "type generator" (that is, a definition of a set of types mple type definition.

Although we will expand on this point at some length in ent section, we note

here that not all values of the parameters may make sense. In ihis case, for example, a
stack of negative size is senseless. Restrictions on the parameters are conveniently

expressed in ßre^, that is, the requires portion of the specifications.

To shorten the pre, post, in, and out conditions in this paper, we often, by

convention, omit assertions about variables which are completely unchanged. Thus, for
example, we have omitted s=s1 from the post condition of top. Such omitted assertions are

nevertheless used in the proof steps. We also generally avoid in our proofs the legitimate

concerns expressed in the term "clean termination" — such matters as array bounds
checks, overflow, division by zero, and other inexecutable operations.

. ■ . -. ■•.-..

.. :■ .■■■.. ■-■=■ ■ ■ ■ ■■■.■■■ ■■■'■ "

ALPHARD: Introduction to Language and Methodology Page 17

The representation portion defines the data structure which each instantiation of

the form will use to represent the abstraction. It also specifies: (1) the initialization to be

performed whenever the form is instantiatec1, (2) the refi function, which relates concrete

to abstract descriptions, and (3) the concrete invariant. Thus, this section provides the

major information relating an abstract entity and its concrete representation.

For this example we have chosen a simple representation for the stack. A vector

holds the contents of tKe stack and an integer variable points to the top of the stack.

form istack (n: integer):

beginform

specifications . . .;
representation

unique v: vector(integer,l,n), sp: integer inrt. sp <- 0;

rep (v,sp) = seq{v,l)sp);

invariant 0 < sp < ni

implementation . ..;

endform;

The first clause of the representation portion describes the concrete data

structure(s) used to represent the abstraction; the key word unique used here indicates

that the following data structure(s) are unique to each instantiation as opposed to being
shared by, or common to, all instantiations. The re£ clause specifies the representation
function which maps concrete objects to abstract ones. The invariant clause specifies Ic.

Also, note the [nit clause attached to the data structure declaration; this is the
distinguished operation, Cjnj(, mentioned in the previous section. The initialization

operation is automatically invoked whenever an instantiation of the form is created, and is

responsible for establishing ßin^.

We would also like to point out the use of the names "vector" and "integer" in this

example. These ar^ not primitive types of the language; they are simply form names.

They happen to be the names of forms which will be automatically provided along with the

compiler, but they are not special in any other way.

From experience in writing forms, we have found that it is convenient to add

another piece of information to the representation: a set of state definitions. These states

are merely a shorthand for a set of boolean conditions, but, as we shall see below, they

help to accent certain interesting situations. A more complete version of the

representation portion of the form is thus:

'

Page 18 Introduction to Alphard

form istack {n: integer):

beRinform
specifications .. .j
representation

unique v: vector(integer,l,n), sp: integer mit sp
rep (v,sp) - seq(v,l,sp);

invariant 0 5 sp < n;
states

mt when sp - 0,

normal when 0 < sp < n,
full when sp ■ n,

err otherwise;
implementation ...;

endform;

0;

The implementation portion of the form contains the bodies of the functions listed in

the specifications, together with their concrete input and output assertions (/-?jn and ^out).

In defining these function bodies we make use of the states defined in »he representation
part. The state of the representation is determined when any function in the form is

invoked, but is not re-evaluated as changes to the representation are made within a

function body. Thus the state may be used, as in this example, to select one of several
possible bodies for a function when it is called. In this particular example the ability to

select alternate bodies is used only for error detection, but it is certainly not limited to
this use.

form istack(n: integer) -

beginform

specifications .. .\

representation .. .5
implementatior.

body push out (s.sp ■ s.sp' + 1 A s.v - o£{s.v,,s.sp,x))-

mt.normal:: (s.sp *■ s.sp + 1; s.v[s.sp]«- x);

otherwise;; FAILj

body pop out (s.sp ■ s.sp'-l) -

normal,full:; s.sp «- s.sp-l;
otherwise:; FAIL;

body top out (x - s.v[s.sp]) ■
normal,full:; x «- s.v[s.sp};

otherwise:: FAILj

,,,, .|„,...,,.^, ,.,,„,,,.,,„- ,,_,., , .,,-,.. ,.. -j. ,-,. ■;„,.;,;. ;,-. . • V,' -■■; ^ ■-,,.•,;.=.; ..

ALPHARD: Introduction to Language and Meihodology Page IP-

body, empty out (b ■ (sp-0)) -
normal,full:: b <- false;

mt:: b *- true;

otherwise;: FAIL;

endform;

Since the states are used to select one of several alternative bodies for a function, the

state descriptions may be used as additional input assertions for the body selected. Thus,

for step 3 of the proof we may add to the precondition the disjunction of the (state)

conditions that can cause the selection of that body. The notation V(V,i,x)", which is used

in the output assertion of "push", denotes a vector identical to "V" except that Vj-x.

Finally, the symbol FAIL used above is intended to connote failure; we prefer to avoid a
detailed discussion of the exception mechanism in this paper and hence will avoid further

elaboration of this symbol here.

Naming and Scope

The previous section dealt with the general organization of forms; in thh section we

shall deal with some of the linguistic details of naming and scope. There are two issues to

be discussed here: one is almost at the level of syntactic detail, but the other is
fundamental to the ability of a form to encapsulate an abstraction through information

hiding. Given the goals of this paper we would normally omit the first of these; they are

closely related, however, so we shall discuss them in sequence.

Consider the previous definition of "istack". We said earlier that ona or more

instantiations of this abstraction can be created by declarations, and that the operations

defined in the form may then be applied to them. For example,

local sl,s2: istack{10);

push(sl,5);

if top(s2)=23 then . ..

But now suppose that another abstraction, call it "rstack", had been defined in the

same program and that it also defined a function "push". We then have to decide which
push operation is being invoked in any given situation The answer, of course, is that the

interpretation of operation names is context dependent. We know that in the example

above the correct "push" is the one in "istack" because its first parameter is an instance

of the istack abstraction. The point can be made clearer by a slight change in notation; a

construct of the form "namel.name2" is called a qualified ncme, its first component must

...

Page 20 Introduction to Alphard

be the name of an instance of some abstraction and its second component must be the

name of a function defined in the appropriate form. Thus,

sl.push(5);

is an invocation of the "push" function defined in the form of which "si" is an instance.
Although this notation is more explicit about the operation named, it has an asymmetry

which is often displeasing.' Thus, Alphard permits both styles of naming, i.e.,

f(pl,p2,.. .,pn) ■ pl.f(p2,.. .,pn)

Although this convention also has some problems, they do not arise in the examples in this

paper (see [Geschke75, Ross70] for discussions of the "uniform referent" problem); we

shai! use whichever notation seems most appropriate in a given instance. In all cases,

however, functions are defined as though the abstraction instance were its first parameter.

The more substantive issue is that of scope — which names are defined where.

Consider the "istack" form again. Inside the form several names are defined; some of

these are the abstract operations, e.g., "push", others are related to the representation,

e.g., "sp". From the discussion above we know that the operation names are available

outside the form as qualifiers of Instance names. In Alphard, however, names such as "sp"

are not available outside the form.

Only names defined in the specifications part of the form are legal outside the form

definition (inside is another matter). If names such as "sp" were legal outside the form.

the abstract program could access, and possibly modify, the concrete representation. If
this were allowed, both theoretical and practical difficulties would arise. First, we could

not partition the proof technique as described above; specifically, we could not ensure that

the concrete invariant was preserved between function invocations. Second, since the

representational information would no longer be hidden it would no longer be safe to

modify a form under the sole restriction that specified properties were preserved. We

would instead have to examine all the uses of the abstraction to be sure that the

representational information was not being used in some clever, but obscure, way.

In summary, only the names appearing in the specification part of a form are legal

qualifiers outside the form definition. In the examples so far all such names have been

function names; as we shall see in future examples, this need not always be the case.

' For example, for binary commutative operations such as "plus" it seems unnatural

to write Hx.plus(y)" rather than "plus(x,y)".

.

■■"■^■■^■■v-"-i. v.-;,: ,^..

ALPHARD: Introduction to Language and Methodology page 2l

The general scope rules in Alphard are Algol-like,0 but with two important

exceptions:

1, Only those names appearing in the specification part of a form may be
used as qualifiers outside the form definition. (Note: all the names

defined in a form ^ay be used as qualifiers inside the same form

definition.)

2. Only *qm. 'mes obey the usual block-strud-J.e convention on entering a

form. Specifically, only those variables defined outside a form which are

passed as parameters are accessible inside the form body.

The earlier paragraphs dealt with the rationale for the first of these restrictions.

The second restriction is imposed so that there are no free variables in a form body; this
ensures that any dependency of the form on its environment is explicated in its parameter

list.

An Aside on Primitive Forms

A basic question which must be answered in the design of any language is which

primitive types should be provided by the language and which should be left for the user
to define. The Alphard position is that ail types but one are defined by forms and, at

least conceptually, could be (re)defined by the user. (The one primitive form which can be
specified but not implemented in Alphard corresponds roughly to the untyped memory of
conventional computers.) To be usable, however, a collection of familiar and useful forms
are defined by a standard prelude [vanWijngaarden69, chapter 10], which is automatically

inserted at the beginning of every user's program. Throughout this paper we shall use

notions such as integer, real, boolean, vector, and so on; the reader may presume that
these are either provided by the standard prelude or have been explicitly defined by
other forms in the same program. In all cases, however, the reader should assume that

these provide the familiar facilities.

Example of a form Verification: Restricted Stacks

In this section we shall illustrate the verification technique on the istack form of the

previous section. First, however, let's pull togethe. the pieces of the istack definition:

8 By Algol-like we simply mean that the interpretation of a name depends upon its

nearest definition in a potentially nested, static block structure.

r
Page 22 Example of a form Verification: Restricted Stacks

form istack(n: integer) -
beginform

specifications

requires n>0;

let istack • < ,.. Xi... > where Xj is integer;

invariant 0<length(istack)^n)

initially istack=nullseqi
function

push(s:istack, xHnteger) pre 0 < length(s) < n post s^s'^x,

pop(s: istack) pre 0 < length(s) < n post s ■ leader(s,)f
top(s: istack) returns x: integer

pre 0 < length(s) < n post x ■ lasUs'),
empty(s: istack) returns b: boolean

post b = (s=nullseq)j

representation
unique v: vector(integer,l,n), sp: integer init sp <- 0;

re^W.sp) = seq(v,l,sp);
invariant 0 < sp S n;
states

mt when sp - 0,

normal when 0 < sp < n,

full when sp = n,

err otherwise;

implementation

body push oyi (s.sp - s.sp' + 1 A s.v = <^(s.v',s.sp,x))-

mt,normal.: (s.sp «- s.sp + 1; s.v[s.sp]«- x)j

otherwise:: FAIL;

body pop out. (s.sp - s.sp'-l) -

•iormal,full:: s.sp «- s.sp-1;

otherwise;; FAIL;

body, top out (x - s.v[s.sp]) -

normal.full;: x <- s.v[s.sp];

otherwise;: FAIL;

body empty out (b - (sp-0)) -

normal.full:; b *- false;

mt:; b«- true;

otherwise;; FAIL;

endform;

pHfppinBQiPPwnpi

ALPHARD: Intr^ ♦ion to Language and Methodology Page 23

In the verification of istack, which is given next, the precondition for each body is

the conjunction of its m clause (which is defaulted to "true") and the union of the state

conditions for which that body is selected.

For the form

1. Representation validity
Show: 0<sp<n 3 0<length(rep(x))<n

Proof: length(rep(x)) - length(seq(v, 1, sp)) - sp.

2. Initialization
Show: n>0 { sp^-O } rep(v, 0) - nullseq A 0<sp5n

Proof: rep(v) 0) ■ seq(v, 1, 0) ■ <>, i.e., nullseq

For the function push
3. Concrete operation

Show: (0=s.sp v 0<s.sp<n) A 05s.sp<n { s.sp^-s.sp+li s.v[s.sp>-x)

s.sp=s.sp'+l A s.v=«;(s.v', s.sp, x) A 0^s.sp<n

Proof: 0<s.sp<n o 0<s.sp+lSn

AB. ßm holds

^in is true

4b. /?poSt holds
Show: 0<s.sp<n A 0<length(rep(s.v, s.fp^^n A s.sp=s.sp'+l A

s.v= <(s.v', s.sp, x) 3 s=s,'vx
Proof: s=rep(s.v, s.sp) • seq(s.v, 1, s.sp'+l) - seqvs.v, 1, s.sp>s.v[s.sp] -

seq(s.v,, 1, s.sp'^x ■ s'^x

For the function pop
3. Concrete operation

Show: 0<s.spsn A 0<s.sp<n { s.sp«-s.sp-l) s.sp=s.spM A 0<s.spSn

Proof: 0<s.sp<n o 0<s.sp-lSn

4a. ^jn holds

ß\n >s true

4b. /?postholds

Show: 0<s.sp<n A 0<length(rep{s.v, s.sp'))<n A s.sp=s.sp,-l ^ s-leader(s,)

Proof: s=rep(s.v, s.sp) - seq(s.v', 1, s.sp'-l) ■ leaders'). Note that

leader(s') is defined since s.sp'>l

For the function top
3. Concrete operation

Show: 0<s.spsn A Oss.spSn { x»-s.v[s.sp]) x-s.v[s.sp3 A Oss.spSn

Proof: Clear

4a. /fljn holds

ß\n is true

mmmmmmmmm wmmm
■ l.ü -s,i^^.v■■.:.'-.-,Y,--' '■■

Page 24 Example of a form Verification: Restricted Stacks

4b. .V.s, holds

Shcvv: 0<s.sp<n A 0<length{rep(s.v, s.sp^^n A X"S.v[s.sp] 3 x=last{s')

Proof: x=s.v[s.sp] - s.v^s.sp'] = 1381(5'). Last(s') is defined since s.sp'il

For the function empty
3. Concrete operation

(Normal, full) Show: 0<s.sp<n A 0<s.sp<n { b<-false } b ■ (s.ip-C) A 0<s.sp< i
Proof: 0<s.sp ? false = (s.sp=0)

(Mt) Show: s.sp=0 A 0<s.sp<n { b«-true } b ■ (s.i,p-0) A 0<s.sp<n
Proof: s.sp=0 = true = (s.sp=0)

4a. /?in holds

ßm is true

4b. /?post holds

Show: 0<s.sp<n A b = (s.sp=0) ^ b = (s=nullseq)

Proof: b = (s.sp=0) = (rep(s.v,s.sp)=nullseq) - (s=nullseq)

QED

The condition n>0 is used implicitly in this proof. The stricter n>0 is needed only to show
that the four elates are disjoi.-.i. Finally, note that the union of the mt, normal, and full

states includes Ic and that ßpre for each function and Ic specifically exclude the states

that would trigger the otherwise alternative for the body. We therefore omit verifications
involving FAIL.

Generalizing Form Definitions

The form defines the abstract notion of a stack-of-integers, but what does the fact

that the items to be stacked are integers have to do with it? It seems that the abstract
notion of a stack ought to be indepf ndent of the kinds of things being stacked.9

We would like to be able to :,3fine a form such as

form stack(T:form. n:integer)=
bepjnform

endform

and then create instantiations with statements such as

Perhaps one can argue that the fact that all items in a particular stack are the
same type, e.g., integers, is an abstract property of a stack, but it would be unfortunate if

we had to define separate forms for stacks of integers, stacks of reals, stacks of
characters, and so on.

mmmmmmmmmmmmm
fPlll""!"! IIWWITHiiiiKiiaimunii.iiMf i, i lunuiiiii»«.'«!! iiiiirllTIrlrrirTrmrrnmitllTini

ALPHARD: Introduction to Language and Methodology Page 25

local si:stack(integer,35), sr:stack(real,14);

which would make "si" a stack of integers and "sr" a stack of reals.

We shall do essentially this, but as we introduce this facility we must be very

careful to retain the validity of the verification technique. In fact, we want to ensure
something stronger: that the resulting proofs are not complicated by the introduction of
this additional flexibility. Thus, we shall start with a careful examination of the proof
appearing in the preceding section.

Specifically, let's observe how the proof depends upon the fact that the items being
stacked are integers. A careful reading of the proof of istack reveals that it depends only

upon the property of the items that we have an assignment operation which obeys the
assignment axiom.*0 The reader is encouraged to examine the proof to verify that this is

in fact the only property required, and therefore to see that the proof woüio be valid for
any type of item possessing this assignment axiom.

Returning to the language issues, what we want is a means for stating that the

parameter "T" above cannot be just any form name; it must be the name of a form which

supplies the properties required by the proof (and, of course, by the bodies of the

concrete operations). The general mechanism used to accomplish this will be discussed

belowj for the moment we will consider only the special case which handles the stack
example. With this addition the form "stack has become a "type generator" as mentioned
above rather than a simple type definition.

We shall append a bracketed list <a|,...,an> to a formal parameter specification to

denote that the properties a|,...,an are required of a corresponding actual parameter.
Thus, in the present case we may write the stack form header as:

form stack(T:torm«->. n:integer)=
beginform

endform

The "«->" attached to the form parameter asserts that the actual form names used in this
position must provide an assignment operation. The specifications part of the actual

parameter form must assert the availability of this operation and assure that it obeys the
assignment axiom. We shall discuss these issues in greater detail below, but first we shall

give the full stack definition and a verification of a program using it. The full stack

10 The assignment axiom is:

P^ f x «- e } P

if x is a simple variable. For subscript variables the meaning of x[i] :- e is x :- oc{x,\,e)
as in [Hoare72a].

Page 26 Generalizing Form Definitions

definition differs from ihe version at the beginning of the previous section only in the nine
italicized lines, which are the ones that previously referred to "istack" or "integer". Its
proof is identical to that given above.

form stack(T:form«->, nunteger)'
beginform
specifications

requires n>0i

let stack "< i..«;,,, > where X: is T\
invariant 0<length(stack)<n;
initially stack=nullseq;
function

push(s:stack, x:T) grz 0 s lengtMs) < n post s=s'~x,
pop(s:stack) pre 0 < lengthis) < n post s m Leader(s*)t

top(s:stack) returns x:T
pre 0 < length(s) < n post x - last(s'),

empty(s: istack) returns b: boolean
post b - (s=nullseq);

representation

unique v. uector(T,l,n), sp: integer init sp
rep (v.sp) -= seq(v,l,sp)i
invariant 0 5 %p < n;
state?

mt when sp - 0,

normal when 0 < sp < n,
full when sp - n,

err otherwise;

0;

implementation

body push oui (s.sp = s.sp' + 1 A s.v = ods.v'^.sp.x))«
mt,normal:: (s.sp ♦• s.sp + 1; s.v[s.sp] «- x);

otherwise:; FAILj

M) = body pop out (s.sp ■ s.sp'

normal.ful!:: s.sp <-

otherwise:: FAIL;
■sp-l;

body top out (x * s.v[s.sp]) =

normal.full:: x «■ s.v[s.sp];

otherwise;: FAIL;

 • _ :

mm

ALPHARD: Introduction to Language and Methodology

body empty out (b = (sp=0)) -
normal.full:: b <- false;
mt:: b «■ true;
otherwise:: FAIL;

Page 27

endform;

Using Stocks in a Program

Once the stack form is defined, programs may declare and use stacks. The following
program uses a stack as defined by this fom to traverse a (finite) binary tree and count
its tips. It also uses iteration and an explicit stack of binary trees [Burstall74, London75].
A binary tree is defined recursively to be either nil or to have a left son and a right son
which are both binary trees. The number of tips is defined recursively by

tips(t) = ü t=nil then 1 else trps(ieftson(t))+tips(rightsona))

We shall not define a binary tree form explicitly, but shall presume that it meets at least

the specifications

isleaf(t;binarytree) returns b:boolean post b ■ (t=nil),
left(t:binarytree) returns u-.binarytree pre tf«nil gost u=leftson(t'),
right(t:binarytree) returns u:binarytree ßre ttnil ßgst u^ightson^')

We shall also presume a tree assignment operation satisfying the assignment axiom. In
stating the maximum permissible depth of the stack we use the height function defined by

height(t) - ü t-nil tjhen 0 else l+max(height(leftson(t)), height(rightson(t)))

Suppose the tip counter is specified by

function tipcount(t:binary\.c^ returns counbinteger EOSI count-tips(t)

Then the body of the function tipcount might be

-:: iMi

p ?8 Generalizing Form Definitions

body tipcount out (counMips(t)) -

begin
unique s:stack(binarytree, ,nax(height(t)(l))(x:binarytree;

x«-t; count«-l;
invariant tips{l) = count - 1 + tips(x) + SIGMALKstips(u);

while - empty(s) v i isleaf(x) do
if isleaf(x) then (count+-count+l; x«-top(s); pop(s))

else {push(s, right(x)); x<-left(x));

end

Throughout the body of tipcount the stack s means the abstract definition in terms of a

sequence. In particular, SIGMAu<:sf{u) means 0 if s=nullseq and otherwise

f(lasUs)) + SlGMAuCleader(s)f(u)

We shall verify the concrete operation of this body (i.e. proof step 3). Note first

that the requires clause (n>0) of the stack form is satisfied. We shall use the usual proof
rule for the while statement.11 Four verification conditions suffice; they are in the form

obtained by backward substitution with each function operation of a form replaced by its

post condition.

1. (entry to while)
Show: tip5(t) = 1 - 1 + tips(t) + SIGMAu(nul|seqtips(u)

where "nullseq" is obtained from the initially clause of stack.

Proof: The SIGMA term is 0.

2. (while to exit)
Show: tips(t) = count - 1 + tips(x) + SIGMALKstips(u) A

-> (s^nullseq v x^nil) ^ count ■ tips(t)
Proof: The SIGMA term is 0 because s«nullseq. tips(xM since x-nil.

1 * The while rule is:
PAB{S}P

P { while B do. S } P A -B

This is a special case of the Alphard iteration construct; it behaves as you would expect a

While Jo behave. A more general iteration mechanism, which allows the author of a form to

specify how iterations involving objects of that type are carried out, is described in

[Shaw76b].

mmmmmmmmmmmmimmmmmmmmmmmmmmM wpiiiiiiiiiiiiiiiwiiijii 11
■

ALPHARD: Introduction to Language and Methodology Page 29

3. (while through then to while)

Show: tips{t) = count - 1 + tips(x) + SIGMAu<stips(u) A

(s?<nullseq v x^nil) A x = nil 3

tips(t) ■ count + 1 - 1 + tips(last(s)) + SIGMAu€|eac|er(s)tips(u)

Proof: x=nil means s^nullseq whence last(s) and leader(s) are defined
(i.e. the j)re conditions for top and pop are satisfied), x-nil also

means tips(xM. The conclusion follows by the definition of

SIGMA.

4. (while through else to while)

Show: tips(t) ■ count - 1 + tips(x) + SIGMAu<stips(u) A
(s^nullseq v x^nil) A x^nil =

tips(t) - count - 1 + '.ipsdeftsonW) + SlGMAu<s<vrjghtsJn()()tips(u)

Proof: x^nil means the ^re conditions of both left(x) and right(x) are
met. x^nil also means tips(x) = tips(leftson(x)) + tips(rightson(x)).

The conclusion follows by the definition of SIGMA. It remains to

show that the ^re condition of push is met. To do this it is

convenient to add two terms to the while assertion:

length(s) + height(x) <, height(t)

s^s^ ..., sk> A l<j<k 3 j + height(Sj) < height(t)

Assuming these two terms are indeed invariants (proof omitted),
the ere condition is met because x^nil means height(x) ^ 1, i.e.

length(s) < height(t).
QED

Farther Parameterization of Forms

The "<>" notation used above is actually much more broadly applicable than might

be suggested by the stack example. To see this, and tc motivate another related facility,

we shall turn away from the form concept for a moment and consider the more traditional

functional abstractions provided by subroutines. Suppose that we wished to write a
subroutine which tested for the equality of two vectors. Using a pseudo-Alphard notation

such a subroutine might appear as:

function eqvecs(A,B:vector(inleger,l,10)) returns (eq:boolean) -

begin

for i from 1 to 10 do

it A[i] I1 B[i] then (eq«-falsej return);
eqMrue;

end

(This example is not "real" Alphard because of the iteration statement; the companion

-^
w;.*!,.. ,..„.. ..:,

Page 30 Generalizing Form Definitions

paper [Shaw76b] defines the Alphard iteration construct and presents this example in its

correct form.)

Much as with the stack example, this program is quite unsrtisfying. We would at

least like to be able to write a function that would cover a broader class of vectors — say
those of arbitrary length. Unless we do this We will be forced to write a different
subroutine for each possible vector length.12 But even if we were to accommodate
different lengths, we might still have to write different subroutines for each possible
element type. Once again, if we examine the proof of this subroutine we will find that the

only dependence on the element type is the existence of a not-equal operation.

The correctness of the implementation of any parameterized abstraction depends or

certain properties of the parameters and is completely independent of others. An abstract

"eqvecs" subroutine should require that: (1) its two parameter vectors be the same length,

(2) the elements of both vectors be the same type, and (3) the type of the elements

provide a not-equal operation. It should not require that: (1) the vectors be of some pre-
specified length, (2) the upper and/or lower bounds of these vectors have some pre-

specified value, or (3) the elements have any other properties.

The "<>" notation provides a means of specifying the required properties of actual
parameters. We shall now introduce questionmark identifiers to permit the specification of

non-requirements. Defining occurrences of such identifiers consist of a "?" immediately
followed by an identifier, e.g., "?xyz"; they appear in formal parameter lists and are
assigned meaning from the corresponding actual parameters. Multiple occurrences of the

same ?identifier are required to have the same meaning in the same scope. Applied
occurrences of these identifiers are uses of the identifiers without question marks. These
may appear anywhere in the scope of their definition — thus, for example, they may be

used to declare variables of the same type as an actual parameter13.

The use of both the "<>" notation and ?identifiers is illustrated by the following

pseudo-Alphard coding of the "eqvecs" subroutine. (The syntax of tho iteration statement

still prevents this from being oroper Alphard.)

^2 Such a restriction is one of the less pleasing aspects of Pascal

[Habermann73, Wirth75].

13 There are somewhat pathological situations involving recursive procedures in

which this scheme will not work; in particular in these cases it is not possible to determine

the proper type? at compile time. We choose to ignore these pathologies here.

ALPHARD: Introduction to Language and Methodology

function eqvecs(A,B:vector(?t<»<>)?lb,?ub)) returns (eq:boolean)

be&in
for i from lb to ub do

if A[i] / B[i] then (eq<-false; return);

eq*-true;

end

Page 31

Note that in this implementation the symbols lb and ub appear as applied

occurrences in the for statement. The intent is that, whatever the lower and upper

bounds of the actual-parameter vectors, these values will be used as the initial and final
values of the for statement range. Also, note that the form of the formal parameter list

ensures that the two actual parameters will have the same element types and bounds.

We shall not prove this implementation of "eqvecs" (the verification of the true

Alphard version appears in [Shaw76b]), but the reader should readily be able to visualize
such a proof and to see that it has not been affected by the generalizations introduced.

Protection and Access Control

The "<>" notation introduced above is clearly an extension of the familiar notion of

type checking in programming languages; in this section we shall try to show its relation to

the protection facilities of modern operating systems, especially those using the capability

based protection model. In the foregoing discussion we stressed the restrictions imposed

on actual parameters by the appearance of the "<>" notation in a formal parameter list.

We did not discuss either the restrictions it imposes on the body jf the subroutine (or
form) or the precise nature of what may appear between the angle-brackets. Those

issues will be treated here as well.

Note that "x:X<p>" appearing in a formal parameter list is intended to assert that the

body depends on property p, and omj on property p, of the parameter. Now, from our
earlier discussion we know that the only visible properties of an abstraction are those

specified in its specifications part. Thus we require that the name "p" be one of the
names defined in the specifications part of the form X. Furthermore, since the abstraction

being defined claims to depend only on the property p, we shall restrict the body of the

abstraction to use only this property. That is, all qualifications of x other than "x.p" (or

p(x,...)) are illegal. (Note that this 's a purely syntactic, compile-time, check. Also note that
we must check that any functions called by the body of the abstraction, where x is a

parameter to that function, must also require no more than "p" access to it.)

In the terminology of operating systems the specifications part of a form defines a

.

Page 32 protection and Access Control

set of accesses to objects of the type defined by the form. T 3 "<>" notation defines both
the access rights required of the actual parameter and allowed to the body. Once the

actual parameter has been bound to the formal at execution time the formal becomes the

name of a capability [Fabry74, Graham72, Jones73, Jones74, Lampson71] for the actual.

At compile time the formal parameter specification may be viewed as a template [Wulf74]

for legal actuals.

The analogy with the capability-based model of protection is not yet complete. In

an operating system it is generally possNe to restrict access rights; the "<>" notation
permits us to do this at formal/actual parameter binding, but may also be useful in other

contexts. For verification purposes, for example, it may be convenient to know that in

some block no side-effect producing operations are applied to a specific variable.

A full treatment of a mechanism which provides this type of protection may be

found in [Jones76]. For our present purposes we shall simply note that the "<>" notation

is permitted in several additional contexts, two of which are discussed below, and in these

contexts imply only a rights restriction (not also a requirement as in formal parameter

specifications). These contexts are declarations and actual parameters. Consider the

declaration:

local i:integer<+,-,=,«->i

This declaration defines a variable of type integer to which only the operations "+", -', = ,

and V" may be applied. Any other operations defined by the integer form will be illegal
— specifically such things as "*", "/", and relational tests. Such a declaration might be

used-for a variable which is intended only for use as a counter, for example.

By attaching a rights restriction to the actual parameter of a subroutine invocation
the user may ensure that only certain operations are applied by the subroutine. Thus, in

the program:

begin
local hinteger;

f(i<+,-.*>)i
...

end:

the main program has all access rights to the variable "i", but restricts the operations that

may be performed by "f" to those listed. This is, perhaps, a somewhat strained example
since the more common case will be to restrict side-effect producing operations; hopefully,

however, it illustrates the point. Once again let us emphasize that this is a purely static,
compile-time check. At compile time, the rights permitted by the actual parameter are

compared to those required by the formal; if the former are not a superset of the latter a

compile-time error message is generated. There is no run-time overhead.

'' '9tKtBBttKKtKKKMtmmmmmmmmmtmm^m«i \.i<m«mm*.. mmmmmmuuimmmumim

ALPHARD: Introduction to Language and Methodology Page 33

Now let's turn to the question of what may be written between the angle brackets,

especially in the context of a formal parameter specification. To this point we have simply

written the name of a property, which is generally a function name. This is sufficient in

the cases where th? type of the formal is specified, but not when the type is

characterized by a 'identifier. Consider an example which involves less suggestive names
than (hose used previously:

function f(a:?T<h>)- .. .;

The intent is, as before, that the function "f" depend only on the fact that the actual

parameter be of a type which provides an "h" operation, not its name. But suppose that
the type of the actual parameter does provide an operation named "h", but it has rothing

to do with the operation which the writer of "f" had in mind, in fact, the writer of "f", or

alternatively the correctness of "f", depends on some input-output relation of the "h"

operation. Thus, we permit properties appearing in the angle brackets to be described in

exactly the same manner as properties appearing in the specifications part of a form
definition. For example,

function f(a:?T<h(T,integer) returns (b:boolean) pre ß\ post ß^)" . . .}

When such specifications appear the problem of validating the legality of a i actual
parameter is more complex than previously. We must not only establish that the form

defining the type of the actual parameter provides a property named "h", but also that: (1)
its parameters and result are of the appropriate type and (2) that the precondition

required in the specification of that property is implied by ß\ and that the postcondition

of that property is sufficient to imply /?£• We do not foresee this proof as part of the
compilation process, but rather as another proof required in the verification of the
program.

Another Example: Queues

As a further illustration of both the Alphard language and the verification technique,

we now present another example. The example is a finite capacity fifo queue; in all
respects but one it is similar to the stack presented earlier. The important difference is
that the representation of a given queue configuration is not unique; that is, there may be

several concrete representations for the same abstract object. We present one program

and its verification with little comment; we then present another implementation of the
same specifications.

The specifications describe the behavior of queues in terms of sequences. Queues

.^i^^^ki,

wmm

n „, Another Example: Queues
Page o4

are implemented using a vector to record the entries and integers to indicate the front,

back, and current length. The enqueue operator, "enq", extends the queue toward higher-

indexed vector elements, wrapping around to the zeroth element when the indices are

exhausted. The dequeue operation, "deq", returns and removes elements in the order in

which they were inserted. The function "size" returns the current queue size.

form fifo(T;'urm<*->, n:integer)=

beeinform

specifications

requires n>0;
let fifo = < . . . Xj ... > where x; Ls Tj

invariant 0<length{fifo)5n;

initially fifo=nullseq;

function
enq(q:fifo, x:T) pre 0<length(q)<n post q-q'^x

deq{q:fifo) returns x;T
pre 0<length(q)<n post x=first(q,) A q«trailer(q');

size(q:fifo) returns x;integer posi x=length(q')

representation
unique v:vector(T,0,n-l), f,b,num:integer inü (f*-num<-0; b«-n-l);

re£(v,f,b,num) - if num=0 then <> else
if f<b then seq(v,f,b) else seq(v,f,n-l)~seq{v,0,b);

invariant 0<num<n A 0<f<n-l A 0Sb<n-l A

(num=0 A n-(b+n-f)mod n + 1 v num>0 A num=(b+n-f)mod n + 1)}

states
mt when num»0,
normal when 0<num<n,

full when num=n,
err otherwise;

implementation
body enq out (q.b={q.b'+l)mod n A q.v^q.v'.q.^x) A q.num-q.num'+l) -

mt,normal:: (q.b<-(q.b+l)mod n; q.v[q.b]<-x; q.num*-q.num+l)i

otherwise:: FAIL;

body de o out (q.f=(q.f'+l)mod n A x-q.v'Cq.f] A q.num-q.num'-l) -

normal,full:: (x*-q.v[q.f]; q.f<-(q.f+l)mod n-, q.num«-q.num-l);

otherwise;; FAIL;

ALPHARD: Introduction to Language and Methodology Page 35

body size out. (x=q.num') =

mt.normal.full:: x<-q.numj

err:: FAIL;

endform

To save space and reduce clutter, the proof omits from Ic the two terms 0<fSn-l

and 0<b<n-l. That they are part of Ic follows because of the mod operations in the

bodies of enq and deq and because of inlt- The requires clause n>0 guarantees disjoint
states and also makes the "mod n" operation well-defined. As in the istack proof,

verifications involving FAIL are omitted.

For the form

1. Representation validity
Show: 0<num<n A (num=0 A n=-(b+n-f)mod n + 1 v num>0 A

num=(b+n-f)mod n + 1) ^ 0<length(rep(x))<n
Proof; 0<num<n, so the conclusion follows by showing length(rep(x)) - num.

First, num=0 = length(<>)=0=num. Second, f<b A num>0 o

length(seq(v,f,b)) ■ b-f+1 • (b+n-f)mod n + 1 = num. Third, f>b A
n>jm>0 => length{seq{v,f,n-lhseq(v,0,b)) ■ (n-f)+(b+l) - (b+r-f)mod

n + 1 = num.

2. Initialization
Show: n>0 { f*-num*-0j b«-n-l } rep(v,0,n-l,0)=nullseq A Ic

Proof: rep(v,0,n-l,0) - <>, i.e., nullseq. For Ic note that the

first term of the or holds for both n-1 anJ n>l

As convenient notation below, let z = (q.v, q.f, q.b, q.num). Furthermore, steps

4b in the proof are simplified if we rewrite the re£ function. Define seqm(v, f,

b, n) to be the sequence

<vf' v(f+l)mod n' v(f+2)mod n' • • ■' V

i.e., the indices are computed mod n (the "m" in seqm suggests "mod"). Then
rep(v.f,b,num) = if numO then <> dse seqm(v,f,b,n). To see that this is the

same as the original refi function, first note that 0<f<n-l and 0<b<n-l. If
num=0 it is clear. If f<b then (f+i) mod n - f+i for l<i<b-f so seq(v,f,b) -

seqm(v,f,b,n). If f>b let j=n-f. Then

seq(v,f,n-l)~seq(v,0,b) = seqm(v,f,n-l,n)'vseqm{v,(f+j)mod n,b,n) - seqm(v,f,b,n)

mmmmmmm

I

D,„a rid Another Example: Queues
Page Jb

For the function enq
3. Concrete operation

Show: 0<q.niim<n A IC { q.b<-{q.b+l)mod n; q.v[q.b>x;

q.num<-q.num+l } ßou\ A IC

Proof: /?out is clear. 0<q.num<n ^ 0<q.nutn+l<n. The last term of the or

becomes q.num+1 = ({q.b+l)mod n + n-q.f)mod n + 1. If n=l then
q.num=0 and it holds. If n>l then ((q.b+l)mod n + n-q.f)mod n + 1

= ((q.b+n-q.f)mod n + Drnod n + 1. If q.num>0 this is q.num mod n

+ 1 = q.num+1. If q.num=0 this is n mod n + 1 = 1 = q.num+1.

4a. fyn holds
/?ln is true

4b. /^post holds
Show: Ic A 0<length(rep(z,))<n A ßau[(z) ^ q = q'^
Proof: q - rep(z) = seqm(q.v1q.f,{q.b,+Drnod n,n) =

seqm(q.v,q.f,q.b',n)~q.v[q.b] = seqm(q.v',q.f',q.b»~x = q^x

For the function deq
3. Concrete operation

Show: 0<q.num<n A Ic { x*-q.v[q.f]; q.f«-(q.f+l)mod n;

q.num<-q.num-l } flou[A IC

Proof: ßoui is clear. 0<q.num<n = 0<q.num-l<n. The rest

of lc follows similarly to enq.3.

4a. upholds
/?in is true

4b. ^postholds

Show: lc A 0<length{rep(z,))<n A /?out(z) = x = first(q) A

q = traileriq')
Proof: x = q-v^q.r] = first(q,). Firstiq') is defined since

length(rep(z,))>0. q = rep(z) = seqm(q.v,,(q.f,*l)mod n.q.b» -

trailer(q,)

For the function size
3. Concrete operation

Show: 0<q.num<n A lc { x«-q.num } x=q.num, A Ic

Proof: clear

4a. flm holds

fl\n i5 true

4b. /?p0st holds
Show: Ic A x^q.num' ^ x=length{q,)
Proof: As in step 1, Ic ^ length(rep(z))=num. Hence x » q.num

length(rep{z,)) ■ lengtKq')
QED

mmm

ALPHARD: Introduction to Language and Methodology Page 37

Another way to implement q queue is to use a vector(T,0,n) rather than a

vector(T,0,n-l). The integer to indicate current length can be eliminated because now
front and back are sufficient. The specifications part is unchanged; the representation and

implementation parts do change in various ways. Accordingly, the proof of the form will

©hang« in each of the four steps. The modified proof steps are similar to the previous

Ones, perhaps even easier because Ic is much simpler. The previous proofs provide useful

guidance, at least to a human. What does not change, of course, is a proof that uses the
fifo form because the specifications are identical. The modified form and its proof are

given next. Here z= (q.v, q.f, q.b).

form fifo{T:form«->, n:integer)=

beRinform

specifications identical to the original fifo form)

requires n>0;

lot fifo ■ < ... X: ... > where Xj is T;
invariant 0<length(fifo)<n;

initially fifo=nullseqj

function
enq(q:fifo, x:T) pre 0<lenglh(q)<n post c=q,~x

deq(q:fifo) returns x:T
pre 0<length(q)<n post x=first(q,) A q=trailer(q,)i

size(q:fifo) returns x:integer post x=length(q')

representation
unique v:vector(T,0,n), f,b:integer inji (f<-0i b«- 0;
rep(v,f,b) = [f f=(b+l)mod{n+l) then <> else seqm(v,f,b,n+l)

invariant 0<f<n A 0<b<n

states
ml when f=(b+l)mod{n+l),

full when f=(b+2)mod(n+l),

normal otherwise;

implementation
body enq out (q.b=(q.b,+l)mod(n+l) A q.v=o<:(q.v,,q.b,x)) -

mt,normal:: (q.b<-(q.b+l)mod{n+l); q.v[q.b]<-x);

otherwise:: FAIL;

mmmmmmm
■ .■■.';..*;-.^ ■.. ■^■.■•..

I

Page :-)8
Another Example: Queues

body deq out (q.f^q.f'+Dmodin+l) A X'q.v'Cq.f]) -
i.ormal.full:: (x«-q.v[q.f]; q.Mq.f+l)mod(n+i))5

otherwise:: FAIL;

body size out (x=(q.b,-q.f,+n+2)mod(n+l)) »

x<-(q.b-q.f+n+2)mod(n+l)j

endform

For the form

1. Representation validity
Show: 0<f<n A 0<b<n s 0<length(rep(x))5n
Proof: Length(<>) = 0. LengtWseqmW.f.b.n^)) = (b-f+l+n+l)mod(n+l) so

0<length(rep{x))<n. (If f?<(b+l)mod(n+l) then 0?<length)
-■;

2. Initialization
Show: n>0 { f^-O; b«-n } rep(v,0,n)=nullseq A IC

Proof: Since 0=(n+l)mod{n+l), rep(v,0(n)=<>. Ic is clear.

The three concrete operations (steps 3) are clear. The three steps 4a follow since

each /?jn is true.

For the function enq

Ab. /?posi holds
Show: lc A Osiength(rep(z'))<n A /^(Z) D q = q~x
Proof: q = rep(z) =seqm(q.v,qJ.(q-b'+l)mod(n+l),n+l) =

seqm(q.v,q.f(q.b>+lH.vrq.b] - seqm(q.v',q.f',q.b',n+l)-x - q'~x

For the function deq
Ab. ^p0st holds

Show: Ic A 0<length(rep(z'))Sn A ^^(z) 3 x = firsl(q') A

q ■ trailer^')
Proof: x = q.v'^.f] = firstfq'). First(q,) is defined since

length(rep(z'))>0. q - rep(z) - seqm(q.v,,(q.r+l)mod(n+l),q.b,,n+l) -

traileKq')

For the function size

Ab. ßpOS[holds
Show: I A x-(q.b,-q.f,+n+2)mbd(n+l) = x-lengtWq')
Proof- xC- (qb,-q.f'+n+2)mod(n+l) - length(rep(z')) - lengtWq')

QED

ALPHARD: Introduction to Language and Methodology Page 39

For verifications involving FAIL, it is convenient to use the facts

lengtKrepW.t.b))^ iff f=(b+l)mod{n+l)
length(rep(v,f,b))-n iff Mb+2)mod(n+l)

Conclusion

We have described the data abst action facilities of the Alphard language and the

associated verification methodology. In this conclusion we shall attempt to allay some

fears which our programming colleagues may have after reading this paper, and then we
shall return to the issue raised in the introduction: the symbiotic effect of methodological

and verification concerns in the design process.

Much of the effort expended in the design of programming languages over the past

fifteen years has been aimed at improving the convenience with which a programmer may
express his algorithms. Alphard in some ways represents the antithesis of this trend. In

general, for example, Alphard programs are somewhat longer than similar Fortran or Algol

programs. (The size increase seems to result maimy from the requirement that

specification and verification information be supplied. Several of our examples, such as

the "simpleset" form developed in [Shaw76b] and the tree manipulation program in

[Shaw76a], suggest further that tne growth may be illusory.) We believe this expansion

to be completely acceptable for several reasons:

1. It is not clear that the concern for convenience has in fact saved
programmers much work. Although isolated examples of the utility of

elaborate features, e.g., array manipulation in PL/I, may be found, the
data on actual language usage [Aiexander72, Knuth71, Wichmann70,73]

suggest that these features are so rarely used that the labor saved is

vanishingly small.

2. Actual coding generally represents only a small fraction of the total effort

expended on a project (e.g., 15-257. or less), whereas debugging, system
integration, and testing represent a large fraction (e.g., 30-507. or
more)[Goldberg73]. Thus, even if we were to double coding time (which

we do not believe will happen) but in the process could halve the other

times, total project time could be reduced. Alphard addresses primarily

the latter costs. Suppose we were to change the representation and

implementation, but not the specifications, of the stack form. The form

itself would have to be reverified, but the programs using it (e.g.,
tipcount) and the verifications of thost programs would remain

unchanged.

e 40 Conclusion

3. We hope that with a language such öS Alphard, the promise of extensible

languages will be realized — that a library of useful abstractions will

develop, and that programmers will thus simply not have to program as

much to get a new system. Although the notion of program libraries is

an old one, it seems (to us) to have had less impact than the notion
warrants. Our hypothesis is that the availability of verified abstractions

in the library will change this, but that hypothesis cannot be tested yet.

We appreciate that there is considerable scepticism in the programming community

concerning the practical applicability of verification techniques. This scepticism extends to

both automated verification aids (e.g., theorem provers) and the ability of "typical"
programmers to write the requisite formal specifications. To the first concern we cite the

accomplishments of existing verification systems [Good75, vonHenke75, Su7Uki75]. All the

examples in this paper and in [Shaw76a, 76b] appear generally within the capabilities of

these systems. As for the second issue, two of the authors (Wulf and Shaw) are primarily

programmers, not verifiers; on the basis of our experience thus far we all believe that the

formulation of the specifications is a learnable formalization of what systems analysts do

anyway. We believe tfle potential gains more than justify the training required.

The practical programmer may r'so question the potential (in)efficiency of Alphard
programs; the pragmatic programmer who has experimented with some of the newer "high

level" languages has ample cause to ask such a question. The intended application area

for Alphard includes large systems programs where efficiency is often essential. We

believe very efficient code can be compiled for Alphard programs, although the nature of
this paper and the material presented do not tend to support this position. We can at
present defend our belief with only one observation on the present discussion. In typical
high level languages the compiler-writer makes certain implementation decisions (for

example, how arrays will be represented); since these decisions are irrevocable, the

programmer cannot choose representational optimizations which will make a particular
program more time or space efficient. The usual argument is that these decisions must be
made by the compiler-writer to prevent the programmer from making a mistake and

hurting himself. Alphard takes a totally different position: all such decisions may be made

by the programmer (if he chooses), but we do demand that he verify that they are correct.

(That's why names such as "integer" and "vector" are considered as simply ordinary form
names which are provided by a standard prelude.) In effect, we have no objection to dirty

coding tricks so long as they are correct and can be verified.

Now let us return to the intoraction of verification and methodology in our design.

It is perhaps simplistic to observe that the things which are easily understood (that is, the

things which we can informally convince o1..'selves are true) are usually easy to prove

formally. Conversely, the things which are familiar or admit of a simple formal description

tend to be easy to understand. This observation is the basis of our remarks.

:

HM

ALPHARD: Introduction to Language and Methodology Page 41

During the design of Alphard, we repeatedly proposed "features" which either were

difficult to formulate proof rules for or which looked suspect on methodological grounds.

We usually found that such a problem signalled an unforeseen problem in the other

domain. For example, our original for statement was much more elaborate than the one
described in [Shaw76b], but seemed plausible on methodological grounds. Its verification,

however, was a horror to behold. Subsequently we have become convinced that the

complexity of its verification was symptomatic of a difficulty which any reader would have

in attempting to understand the statem trA or its use.

Conversely, good ideas in one domain generally proved to be good in the other as

well. The whole form concept, for example, was introduced for methodological reasons. It

is this factorization and isolation, however, which appears to make either hand or

mechanical verification feasible. Similarly, the notion of generators as described in
[Shaw76b] was introduced on methodological grounds, but is simplifying the verification ot

many loops. Since loop control is implidt rather than explicit, one verification of that loop

control suffices. Various predicate were introduced because they were needed for
verification, but their presence seems to direct our thinking toward things which, on
methodological grounds, we ought to worry about. Finally, the explication of the

verification technique exposed the need for certain features, e.g., the init clause in the
representation part, which at best were thought of as conveniences and at worst would
have been missed completely on the basis of methodological and/or language

considerations alone. Dijkstra [Dijkstra75] describes in general terms related experiences.

One closing point: Alphard has not yet been implemented. Although an

implementation is now underway, the authors and their colleagues made an early and
conscious decision not to implement too early, thereby avoiding premature commitment to

design decisions. though we may have frustrated some of our colleagues at other

research institutions „/ changing the language almost daily, we believe this has been the

right approach. We hope, but will not promise, that the publication of this document and
of [London76, Shaw76a, 76b] represents a stable point in those featurss of the language

which have been discussed.

AcknowLedgements

We owe a great deal to our colleagues at CMU and ISI, especially: Mario Barbacci,

Donald Good, John Guttag, Paul Hilfingtr, David Jefferson, Anita Jones, David Lamb, David

Musser, Karla Perdue, Kamesh Ramakrishna, and David Wile. We would also like to thank
James Horning and Barbara Liskov and their groups at the University of Toronto and

Massachusetts Institute of Technology, respectively, for their critical reviews of Alphard.

Finally, we very much appreciate the perceptive responses that a number of our

colleagues have made on an earlier draft of this paper.

liilllliBiWWIIII IlllllilljIllliiPP^ illlll.lllllllllllllllffWPipWIMWIillllW I IIIIWllli

Page 42

References

[Alexander72] William Gregg Alexander, "How A Programming Language is Used", CSRG

Technical Report 10, University of Toronto, February 1972.

[Baker72] F. T. Baker, "Chief Programmer Team Management of Programming", IBM

Systems Journal, 11, 1, 1972 (pp. 56-73).

■

[Brooks753 Frederick P. Brooks, Ji., The Mythical Man-Month: Essays on Software

Engineering, Addison-Wesley, 1975.

[Burstal^-a] R. M. Burstall, "Program Proving as Hand Simulation with a Little Induction",

Proc. oflFIP Congress 74, 1974 (pp. 308-312).

[Buxton70] J. N. Buxton and B. Randell (eds.). Software Engineering Techniques, Report on
A Conference Sponsored by the NATO Science Committee, Rome, Italy, October 27-31,

1969, NATO, April 1970.

[Dahl72] Ole-Johan Dahl and C. A. R. Hoare, "Hierarchical Program Structures", In

Structured Programming (0.-J. Dahl, E. W. Dijkstra, and C.A.R. Hoare), Academic

Press, 1972 (pp. 175-220).

[DataConference76] Proc. of the SIGPLAN/SICMOD Conference on Data: Abstraction,

Definition, and Structure and Supplement to the Proc, March 1976.

[Dijkstra68a] E. W. Dijkstra, "A Constructive Approach to the Problem of Program

Correctness", BIT, 8, July 1968 (pp. 174-186).

[Dijkstra68b] Edsger W. Dijkstra, "Go To Statement Considered Harmful", Commumcatto/w

of the ACM, 11, 3, March 1968 (pp. 147-148).

[Dijkstra72] Edsger W. Dijkstra, "Notes on Structured Programming", in Structured
Programming (O.-J. Dahl, E. W. Dijkstra, and CAR. Hoare), Academic Press, 1972 (pp.

1-82).

[Dijkstra753 Edsger W. Dijkstra, "Correctness Concerns and, Among Other Things, Why
They Are Resented", Proc. /nterraattonai Conference on Reliable Software, April 1975

(pp.546-550).

[Fabry74] R. S. Fabry, "Capability-Based Addressing", Co/nmuntcationj of the ACM, 17, 7,

July 1974 (pp. 403-412).

mmmmm
IWMiW«)M>!ttJlHIUIIWIM«W*

ALPHARD: Introduction to Language and Methodology Page 43

[Floyd67] Robert W. Floyd, "Assigning Meanings to Programs", Proc. Symp. in Applied
Mathematics, Vol 19 (J. T. Schwartz, ed.), American Mathematical Society, 1967 (pp.

19-32).

[Geschke75] C. M. Geschke and J. G. Mitchell, "On the Problem of Uniform References to

Data Structures", IEEE Transactions on Software Engineering, SE-1, 2, June 1976
(pp. 207-219).

[Goldberg73] Jack Goldberg (ed.), Proc. of a Symposium on the High Cost of Software, SRI,

September 1973.

[Good75] Donald I. Good, Ralph L. London, and W. W. Bledsoe, "An Interactive Program
Verification System", IEEE Transactions on Software Engineering, SE-1, 1, March

1975 (pp. 59-67).

[Graham72] G. Scott Graham and Peter J. Denning, "Protection — Principles and Practice",
Proc. Spring Joint Computer Conference, 1972 (pp. 417-429).

[Gries74] David Gries, "On Structured Programming - A Reply to Smoliar", ACM Forum,

Communications of the ACM, 17, 11, November 1974 (pp. 655-657).

[Guttag75] John V. Guttag, "The Specification and Application to Programming of Abstract

Data Types", (Ph. D. Thesis), CSRG TerK.Ucal Report 59, University of Toronto,

September 1975.

[Güttag76a] John Guttag, "Abstract Data Types and the Development of Data Structures",

Supplement to the Proceedings of the SIGPLAN/SIGMOD Conference on Data:

Abstraction, Definition, and Structure, March 1976 (pp. 37-46).

[Guttag76b] John V. Guttag, Ellis Horowitz, and David R. Musser, "Abstract Data Types and

Software Validation", C/5C Information Sciences Institute Technical Report, 1976.

[Habermann73] A. N. Habermann, "Critical Comments on the Programming Language

Pascal", Acta Informatica, 3, 1, 1973 (pp. 47-57).

[vonHenke75] F. W. von Henke and David C. Luckham, "A Methodology for Verifying

Programs", Proc. International Conference on Reliable Software, April 1975 (pp.

156-164).

[Hoare69] C. A. R. Hoare, "An Axiomatic Basis for Computer Programming",

Communications of the ACM, 12, 10, October 1969 (pp. 576-580, 583).

[;-loare72a] C. A. R. Hoare, "Notes on Data Structuring", in Structured Programming (O.-J.

Dahl, E. W. Dijkstra, and C.A.R. Hoare), Academic Press, 1972 (pp. 83-174).

Page ^4 References

[Hoare72b] C. A. R. Hoare, "Proof of Correctness of Data Representations", Ada
Informatica, 1,4, 1972 (pp. 271-281).

[Jofies73] Anita Katherine Jones, "Protection in Programmed Systems", (Ph.D. Thesis),
Carnegie-Mellon University Technical Report, 1973.

[Jones74] Anita K. Jones and William A. Wulf, "Towards the Design of Secure Systems",

Software-Practice and Experience, 5, 4, 1975 (pp. 321-336).

[Jones76] Anita K. Jones and Barbara H. Liskov, "An Access Control Facility for

Programming Languages", Computation Structures Group Memo 137, Massachusetts

Institute of Technology and Carnegie-Mellon University technical Report, 1976.

[Knuth71] Donald E. Knuth, "An Empirical Study of Fortran Programs", Software-Practice

and Experience, 1, 1971 (pp. 105-133).

[Lampson71] Butler Lampson, "Protection", Fifth Princeton Conference on Information

Sciences and Systems, 1971 (pp. 437-443).

[Liskov74] Barbara Liskov and Stephen Zilles, "Programming with Abstract Data Types",

SIGPLAN Notices, 9, 4, April 1974 (pp. 50-59).

[Liskav75a] Barbara Liskov, "A Note on CLU", MAC-TR, Massachusetts Institute of

Technology, June 1975.

[Liskov75b] B. H. Liskov and S. N. Zilles, "Specification Techniques for Data Abstractions",

/£££ Transactions on Software Engineering, SE-1, 1, March 1975 (pp. 7-19).

[London75] Ralph L. London, "A View of Program Verification", Proc. International
Conference on Reliable Software, April 1975 (pp. 534-545).

[London76] Ralph L. London, Mary Shaw, and Wm. A. Wulf, "Abstraction and Verification in

Alphard: A Symbol Table Example", Carnegie-Mellon University and USC Information
Sciences Institute Technical Reports, 1976.

[Manna74] Zohar Manna, Mathematical Theory of Computation, McGraw-Hill, 1974.

[Naur66] Peter Naur, "Proof of Algorithms by General Snapshots", BIT, 6,4, 1966 (pp.
310-316).

[Naur69] Peter Naur and Brian T.andell (eds.). Software Engineering, Report on a

Conference Sponsored by the NATO Science Committee, Garmisch, Germany, October

7-1 i, 1968, NATO, January 1969.

 , _.. _ _

ALPHAf?D: Introduction to Language and Methodology Page fl5

[Parnas71] D. L. Parnas, "Information Distribution Aspects of Design Methodology", !FIP

Congress 1971, Booklet TA-3 (pp. 26-30).

[Parnas72a] D. L Parnas, "On the Criteria to be Used in Decomposing Systems into

Modules", Commtmicottoni of the ACM, 15, 12, December 1972 (pp. 1053-1058).

[Parnas72b] D. L Parnas, "A Technique for Software Module Specification with Examples",

Communications of the ACM, 15, 5, May 1972 (pp. 330-336).

[Ross70] Douglas Ross, "Uniform Referents: An Essential Property for a Software
Engineering Language", in Software Engineering, Volume 1 (J. J. Tou, ed.), Academic

Press 1970 (pp. 91-101).

[Schuman71] Stephan A. Schuman (ed.), "Proceedings of the International Symposium on

Extensible Languages", 5/GPL/W Notices, 6, 12, December 1971.

[Shaw76a] Mary Shaw, "Abstraction and Verification in Alphard: Design and Verification

of a Tree Har\ö\er", Carnegie-Mellon University Technical Report, 1976.

[Stiaw76b] Mary Shaw, Wm. A. Wulf, and Ralph L London, "Abstraction and Verification in

Alphard: Iteration and Generators", Carnegie-Mellon University and USC Information

Sciences Institute Technical Reports, 1976.

[Spitzen75] Jay Spitzen and Ben Wegbreit, "The Verification and Synthesis of Data

Structures",/Icta InformaticaAZ, 1975, (pp. 127-144).

[Suzuki75] Norihisa Suzuki, "Verifying Programs by Algebraic and Logical Reduction", Proc.

International Conference on Reliable Software, April 1975 (pp. 473-481).

[Wegbreit 76] Ben Wegbreit and Jay M. Spitzen, "Proving Properties of Complex Data

Structures", Journnl of the ACM, 23, 2, April 1976 (pp. 389-396).

[Weinberg71] Gerald M. Weinberg, The Psychology of Computer Programming, van

Nostrand Reinhold, 1971.

[Whorf56] Benjamin Lee Whorf, "A Linguistic Consideration of Thinking in Primitive

Communities", in Language, Thought, and Reality (John B. Carroll, ed.), MIT Press,

1956.

[Wichmann70] B. A. Wichmann, "Some Statistics from Algol Programs", Central Computer

Unit Report 11, National Physical Laboratory, August 1970.

[Wichmann73] B. A. Wichmann, "Basic Statement Times for Algol 60", NPL Report MAC 42,

National Physical Laboratory, November 1973.

_

WPPIIIWWWIWIP^ ppiiwiiililiipatl^^ ' iiwpiiiiiiiiiwwjpiniim ijiiii.i.iiwjjg.. r«5ij

PaSe ^ References

[vanWijngaarden69] A. van Wijngaarden (ed.), B. J. Mailloux, J. E. L Peck, and C. H. A.

Koster, "Report on the Algorithmic Language Algol 68", Numerische Mathematik, 14,
1969 (pp. 79-218).

[Wirth71] Niklaus Wirth, "Program Development by Stspwise Refinement", Communication*
of the ACM, 14, 4, April 1971 (pp. 221-227).

[Wirth75] Niklaus Wirth, "An Assessment of the Programming Language Pascal", IEEE
Transactions on Software Engineering SE-1, 2, June 1975 (pp.192-198).

[Wulf72] W. Wulf and Mary Shaw, "Global Variables Considered Harmful", SICPLAN
Notices, 8, 2, February 1973 (pp. 28-34).

[Wulf74] W. Wulf, E. Cohen, W. Cor vin, A. Jones, R. Levin, C. Pierson, and F. Pollack,

"Hydra: The Kernel of a Multip ocessor Operating System", Communication* of tne
ACM, 17, 6, June 1974 (pp. 337-345).

[Zilles75] S. N. Zilles, "Abstract Specifications for Data Types", IBM Research Laboratory,
San Jose, January 1975.

ALF HARD: Introduction to Language and Methodology Page 47

Appendix A
Formal Definition of a Sequence

In the examples presented in the body of the paper the notion of a (mathematical)
sequence was used several times. An axiomatic definition o* a sequence may be found in

[Hoare 72a]; a version adapted to the needs of our examples is included below for
completeness.

1. Let D be a set called the domain of the elements of a
sequence; then

(a) <> is a sequence, the null sequence, sometimes denoted
"nullseq".

(b) if x is a sequence and d(D, then x~<d> is .i sequence

(c) the only sequences are those specified by (a) & (b)

2. The following functions and relations are defined:

(a) last(x^<d>) =df d

(b) leader{x'v<d>) »M x

(c) x^y^z) »^f (x~y)~z

(d) first(<d>) =df d

x^o 3 first(x'v<d>) =df first(x)

(e) trailer(<d>) ■-« <>

x^<> 3 trailer(x'v<d>) ^äf trailer(xh<d>
Note: "first", "last", leader, and "trailer" are not defined on

the null sequence, <>.

(f) length(<>) =df 0

length(x'v<d>) =df l+length(x)

3. The notation <d2,d2,...,dn> is an abbreviation for
<>-v<d i >'v<d2>'v...~<dn>.

4. If V is a vector whose elements are in D and n and m are

integers, then "seq(V,n,m)" is an abbreviation defined by:
n>m ^ seq(V,n,m) «^ <>

n<m ^ seq(V,n,m) =df <Vn,Vn+1,...,Vm>

5. The definition of equality of sequences is included in 1 and 2
as the two theorems:

x=y iff (x=y=<> v first(x)=first(y)Atrai!er(x)=trailer(y))

x»y iff (x=y=<> v last(x)=last(y)Aleafier(x)=leader(y))

